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Steady shallow flow over a spillway 
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A simple derivation of recent shallow-flow equations with bed curvature is presented. 
These equations are applied to steady flow over a high overflow spillway crest, to 
obtain the head-discharge relationship and the crest-pressure distribution in good 
agreement with experiment. It is inferred that the equations are valid for quite large 
negative curvature. On the other hand, their application to steady flow over a spillway 
toe indicates their validity for positive curvature is more limited. 

1. Introduction 
The well-known nonlinear shallow-flow equations of de Saint-Venant (1871) for 

open channels have been generalized by Dressler (1978) to account for bed curvature, 
i.e. when the channel bottom is not flat. With bed curvature one has to consider a 
vertical velocity component and the pressure is no longer simply hydrostatic. 
Dresaler (1978) adopted curvilinear co-ordinates and carried out a detailed asymptotic 
analysis, retaining terms to fist order in the ‘shallowness parameter’ to derive his 
equations. In 0 2 we note the essential assumptions involved to deduce these equations 
from the usual equations of flow in these co-ordidates. We deduce a more compact 
form of the parallel component of the equation of motion. In  $53 and 4 the equations 
are applied to steady flow over a high overflow spillway crest and a spillway toe, 
respectively. 

2. Shallow-flow equations with bed curvature 
Orthogonal curvilinear co-ordinates (8, n) are used to define the two-dimensional 

flow domain, where s is measured downstream along the bed and n is normal upwards 
from it, as shown in figure 1. Scale factors for these co-ordinates are 1 - K n  = J(8, n) 
and 1 respectively, where ~ ( s )  and J(s,n) denote curvature and Jacobian. We con- 
sider incompressible irrotational inviscid flow under constant gravity g, so that the 
system of equations to be solved is: 

t Permanent address: University of Waikato, Hamilton, New Zealand. 
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FIGURE 1. Definition sketch. 
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u and w are the velocity components, p is the pressure, p is the density, h(8, t )  denotes 
the flow depth, and ph is the constant pressure at the free surface. 

Let us assume shallow flow such that 

we obtain from (2.2) 
UO(8, t )  u(8, n, t) = - 
1 - K n ’  

from (2.1), (2 .6)  and (2.9) 

and (2.4),  (2.7), (2.8) and (2 .9)  yield 

(2.11) 

Equations (2 .9)  and (2.10) define the influence of bed curvature on the velocity 
components, and (2.11) the pressure head due to both hydrostatic and curvature 
effects. Here bed velocity u&, t )  and flow depth h(s, t )  are given by 

(2.12),  (2.13) 1 
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where the energy head E and flow per unit width q are 

(2.14) 

(2.15) 

This is the system of equations obtained by Dressler (1978) using asymptotic methods. 
Equation (2.12) is a more compact form of his equation (13.01), and follows im- 
mediately from (2.3). Equation (2.13) may be interpreted as mass conservation, since 
(aq/as) ds is the net outflow rate and ( 1  -Kh)&ah/at is the rate of increase of free 
surface storage per unit width of channel. In  deriving (2.13), we integrate (2.1) over 
the flow depth 

ah = - U(8, h, t )  - 
as 88' 

and then invoke boundary condition (2.5). A more detailed discussion of the deri- 
vation of this system of equations may be found in Sivakumaran (1981). 

For steady flow we note that the kinematic boundary condition (2.5) expressed aa 

implies 
Idhl 4 I(1-Kh)dSl (2.16) 

under the shallow-flow assumption IwI 4 1.1. We note that (2.16) is more readily 
satisfied when K < 0. 

3. Steady flow over a spillway crest 

spillway crest. Equations (2.14) and (2.15) reduce to (settingp,, = 0) 
We apply the shallow-flow equations with bed curvature to steady flow over a 

(3.1) 
4 
2s 

E = (I+ h cos 6 + - ( 1  - K h ) - t  = constant, 

q = - 3 h ( l - K h )  K = constant, (3.2) 

so that eliminating uo gives the equation for the upper nappe (defined by h) 

qaKa E C+ hcos 6 + -  (( 1 - K h )  In (1  -Kh)}-'; 
2s 

in dimensionless form 
(3.3) 
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0.50 - 0.320 - 0.016 
1.00 - 0.745 - 0.059 
1.33 - 1.029 -0.110 

Tmm 1. 

where Ha denotes a reference head (' design head ' ) and 

The dimensionless pressure head at the bed (n = 0) is 

where po denotes the pressure at  the bed. 
Chow (1959) has summarized model tests by the U.S. Army Engineers Waterways 

Experiment Station of so-called WES shapes for high overflow spillways. We con- 
sider the case of vertical upstream face without piers described in $14.6 of Chow (1959). 

The spillway crest is given non-dimensionally by 

and experimental co-ordinates of the upper nappe profile are given for dimensionless 
operating heads (excluding the velocity head) H / H ,  = 0.50, 1.00 and 1.33. We 
consider the nappe co-ordinate domain 0.2 < x J H ,  < 1.8, for which the ranges of x 
are summarized in table 1. It is notable that x < - 0.85 near the crest for H / H ,  = 1.33, 
somewhat outside the tentative range of validity suggested by Dressler (1978) for 
experimental check of the equations. 

Setting E = H ,  we calculated the values of the parameter F (related to the Froude 
number) in (3.4) to fit the experimental upper nappe profiles at the nine tabular 
points xn/Hd = 0.2(0.2)143. The pointwise deviation of F from its average value is 
not more than 4%, as shown in figure 2. The inferred dimensionless flows per unitr 
width (Fi) for operating heads H I H ,  = 0.50, 1-00 and 1.33 are 0.163, 0.512 and 
0.815; weirs of simpler shapes are often used for flow measurements (see for example 
Ackers et al. 1978).1 Further, a logarithmic plot of averaged F) against operating 
head H / H ,  shown in figure 3 yields the formula I 

t Equation (3.4) defines the relation between ( E / H , ,  F ,  x). To test this relation experi- 
mentally one must at least know either ( E / H d ,  x) or ( F ,  x). For instance, given the energy 
( E / H , )  and the spillway and nappe profiles (x for different x), equation (3.4) defines F uniquely; 
energy loss due to the build up of a turbulent boundary layer at3 we go down from the crest 
amounts for any slight error trend in estimating F (cf. figure 2). However, given either the 
energy or the flow (q), using (3.8) and (3.4) one can solve numerically for the unknown nappe. 
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FIGURE 2. Point-wise percentage deviation of P :  0, H / H d  = 0.60, FaV = 0.0266; 
0,  H / H ,  = 1-00, F,v = 0.2622; A, H / H d  = 1.33, F,v = 04647. 

Introducing a local Froude number as defined by Dressler (1978), viz. 

(3.9) 
9 - E -  GI 

gh cos 8 ' 
with P = H equation (3.1) reads 

whence 

(3.10) 
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Separation /‘ 
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FIQURE 4. Curves for flow separation and critical flow. Subcritical: 9 < 2FC = - (1  - x)* In 

(i-X)/x[1+ln(i-x)]. Separation:.F 3 Fn = - ~ ( I - x ) ~ / x ( ~ - x ) .  

The local Froude number as a function of x (shown in figure 4) corresponds to super- 
critical flow with or without separation. 

Using the averaged values of F found from the upper nappe profiles, we computed 
theoretical pressure profiles from (3.6) for H / H ,  = 0.50, 1.00 and 1-33, fo compare 
with the experimental profiles in the range 0 < x / H d  < 1.2 reproduced in Chow 
(1959), figures 1P13:  see figures 5 (a,  a). These experimental pressure profiles at the 
bed are affected by separation at larger heads and build up of local turbulence, 
particularly behind curvature discontinuities that should be avoided (Rouse & Reid 
1935) but are clearly indicated in Chow’s figure. Slight modification of the results to 
allow for the influence of the neglected approach velocity head might be expected. 
We also fitted the experimental pressure profiles shown in Chow (1959) as best we 
could to (3.6), to obtain new parameter values #’** = 0.160, 0.507 and 0.797 for the 
respective dimensionless operating heads H / H ,  = 0-50, 1.00 and 1.33: we obtained 

(3.8”) 

Further encouraging comparison with experiment is reported in a paper now in 
preparation. 
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FIGURE 6. Pressure profiles along the spillway crest: (a) theoretical, 
and (b) experimental. 

4. Steady flow over a spillway toe 
Assuming negligible potential energy, various authors have given analytic solutions 

for steady ideal flow over a spillway toe. Douma (1964) and Balloffet (1961) used a 
' free-vortex' approximation, and Henderson & Tierney (1963) used a hodograph 
transformation to study irrotational flow for large curvature. A detailed discussion 
of their assumptions may be found in Henderson (1966) and also in Dobson (1967), 
who computed solutions by finite difference methods. 

The irrotational nature of the shallow flow equations implicit in (2.9) leads to an 
identical solution if the potential energy is neglected. It follows from the Bernoulli 
equation (cf. (2.8) or (3.1)) that the particle speed a t  the free surface is constant (ul, 
say); hence from (3.2) and (2.11) we have the dimensionless curvature 

a-1 = = Bln B-1, 
and the pressure coefficient 

where 0 = 1 - ~ h , ,  po is the bed pressure at the point of symmetry, and hl, h, are the 
initial and central depths respectively (cf. figure 6). This solution is identical with 
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FIQTJRE 6. Flow at 8 spillway toe. 

that of 'free-vortex' theory and is valid when Khl 5 8 or KhZ 5 0.185 according to 
Henderson & Tierney (1963). 

Of course the shallow-flow equations also readily permit a solution including the 
potential energy. In  the symmetric case shown in figure 6 for example, it follows from 
(3.1) and (3.2) that 

i 

where a = 2a8Fr1, = at- 2a2(a - 1) Pi1 cos 4, a = ( ~ h , ) - l  as before, and PI =- uf/ 

The bed pressure a t  the point of symmetry (p,,) now consists of a hydrostatic 
(Shl). 

component 

and a centrifugal component 

or correspondingly 

Ps = P A  

Pc = iPUf { (  1 - Kh,)-' - I}; 

Q =A= - *pu; (1 - nz) (an In !2)-2. (4.5) 

When the potential energy is neglected (Fl+ a) the hydrostatic part vanishes, so that 
C, = C,. The root e-l < fi < 1 of (4.3) that corresponds to the low potential energy 
limit (infinite Froude number) described above is shown in figure 7. Corresponding 
centrifugal pressure profiles for various Froude numbers are shown in figure 8, and 
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FIQURE 7. Root fi of equation (4.3). 
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FIGURE 8. Maximum centrifugal pressure versus toe curvature, for 24 = 45". 

, experiment (24 = 45O), after Henderson & Tierney ( 1963). 

we note that the bed pressureat the point of symmetry is increased when the potential 
energy is included. Thickening of the flow layer associated with increasing centrifugal 
pressure is illustrated in figure 9. We note that the solution validity is as before, and 
that we have continued to neglect surface disturbances that may occur at high Froude 
number. 
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FIQURE 9. Flow layer thickening with increasing centrifugal pressure, for 2$ = 46". 

5. Conclusions 
The derivation of recent shallow flow equations with bed curvature has been 

reviewed. It has been shown that these equations may be used to predict steady flow 
and pressure profiles over high overflow spillway crests or toes. Comparison with 
experiment for a tested spillway indicates that the equations are valid for quite large 
negative bed curvature (convex bottom), although limited to smaller positive bed 
curvature (concave bottom). 
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